Deformation-Invariant Sparse Coding
نویسندگان
چکیده
3
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملAirplane detection based on rotation invariant and sparse coding in remote sensing images
Airplane detection has been taking a great interest to researchers in the remote sensing filed. In this paper, we propose a new approach on feature extraction for airplane detection based on sparse coding in high resolution optical remote sensing images. However, direction of airplane in images brings difficulty on feature extraction. We focus on the airplane feature possessing rotation invaria...
متن کاملDeformation-Invariant Sparse Coding for Modeling Spatial Variability of Functional Patterns in the Brain
For a given cognitive task such as language processing, the location of corresponding functional regions in the brain may vary across subjects relative to anatomy. We present a probabilistic generative model that accounts for such variability as observed in fMRI data. We relate our approach to sparse coding that estimates a basis consisting of functional regions in the brain. Individual fMRI da...
متن کاملFlip-invariant Video Copy Detection Using Sparse-coded Features
Now a days, a number of videos are available in video databases, social networking sites and other web servers. Large size of these video database make it difficult to trace the video content. To ensure the copy-right of the videos in video database, a video copy detection system is needed. A Video copy detection system stores the video features that characterize a video along with the video in...
متن کاملOn Shift-Invariant Sparse Coding
The goals of this paper are: 1) the introduction of a shiftinvariant sparse coding model together with learning rules for this model; 2) the comparison of this model to the traditional sparse coding model; and 3) the analysis of some limitations of the newly proposed approach. To evaluate the model we will show that it can learn features from a toy problem as well as note-like features from a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012